
**
PAPER COMPILING EXERCISES: Solution key with explanation

**

DIRECTIONS:
1) Compute by HAND the output of each program.
2) Compare your work with a peer BEFORE verifying with a compiler
3) Review your work and learn from any mistakes

WhatsMyValue1

public class WhatsMyValue1 {

 public static void main(String[] args) {
 int saturn = 100;
 int mars = 20;
 int comet = saturn / mars;
 mars = comet * 10;
 saturn = mars % 10;
 System.out.println("Saturn: " + saturn);
 System.out.println("Mars: " + mars);
 System.out.println("Comet: " + comet);
 } // close main
} // close class

Output:

Solution Notes:
The % is called the modulous opeator. You can think of it like the “remainder” operator: it
divides the left operand with the right operand and returns the integer value of the reminder
after integer division. Examples:

4%2 = 0 [2 divides evenly into 4 with zero remainder. 4/2 = 2 with nothing left over.]

4%3 = 1 [3 does not divide evenly into 4. 1 is left over after 4/3]

It’s really handy to use the % modulus operator to determine if a number is even or odd. If the
number is X, and we take the modulo 2 of it like X%2, we’ll get 0 if X is even, and 1 if X is odd.
This is very handy for implementing many data-related algorithms.

WhatsMyValue2

public class WhatsMyValue2 {
 public static void main(String[] args) {
 boolean tomato = true;
 boolean ginger = false;
 int oregeno = 50;
 int fenugreek = 2;
 if(tomato){
 oregeno = oregeno / fenugreek;
 } else {
 oregeno = fenugreek;
 }
 if(ginger && tomato){
 oregeno = oregeno * fenugreek;
 }
 ginger = !ginger;
 System.out.println("Tomato: " + tomato);
 System.out.println("Ginger: " + ginger);
 System.out.println("Oregeno: " + oregeno);
 System.out.println("Fenugreek: " + fenugreek);

 } // close main
} // close class

Output:

Solution Notes:
If Control logic
The line if(tomato) { } Uses the value of a plain old boolean variable to control the if() block.
Any code inside the { and } of the if block is executed if the value inside the if’s() is true. At its
most simple form, a boolean type variable can be used to control this logic.

Compound boolean operators: && (and) and || (or)
The && and || operators take two operands (left and right). Each is evaluated to its true or false
value. And expression with && evaluates to true if and only if both the left and the right operand
evaluate to true.

The || (or) operator takes to operands (left and right). Each side is evaluated to its true/false
value. If either one of the two operands OR both are true, the entire expression evaluates to
true.

Negation Operator!
We can negate a boolean type variable with the exclamation point. This is a unary operator
meaning it only acts on a single value. It “flips” true values to false, and false values to
true.Examples:

!true evaluates to false
!false evaluates to true
boolean t = true;
System.out.println(!t) // this will spit out false

WhatsMyValue3

public class WhatsMyValue3 {
 public static void main(String[] args) {
 int turtle = 4;
 int marmot = 2;
 boolean sloth = false;

 while(marmot <= turtle){
 sloth = !sloth;
 marmot = marmot + 1;
 } // end while
 if(sloth){
 marmot = marmot * marmot;
 }
 System.out.println("Turtle: " + turtle);
 System.out.println("Marmot: " + marmot);
 System.out.println("Sloth: " + sloth);
 } // close main
} // close class

Output:

Solution Notes:
Negation Operator!
We can negate a boolean type variable with the exclamation point. This is a unary operator
meaning it only acts on a single value. It “flips” true values to false, and false values to true.
Examples:
!true evaluates to false
!false evaluates to true
boolean t = true;
System.out.println(!t) // this will spit out false

While Loops:
Note that the while loop will run as long as the expression marmot <= turtle evaluates to true.
In this case, when the while is first encountered, marmot is 2 and turtle is 4. The while loop will
run three times exactly since 1 is added to marmot each cycle. When we jump after the while
once marmot <= turtle becomes false, marmot is 5 (not 4!!). Work it out by hand,
carefully!

Remember, marmot will be incremented by one during the last pass through the while loop EVEN
THOUGH the control expression evaluates to false after marmot becomes 5. And after the while
loop, we execute marmot = marmot * marmot, which comes out to: 5 *5 = 25.

25 which is the value of marmot at the println()call.

WhatsMyValue4

public class WhatsMyValue4 {
 public static void main(String[] args) {
 int australia = 10;
 int chile = 5;
 boolean ecuador = false;
 chile = australia + chile;
 System.out.println("Australia before call: " + australia);
 System.out.println("Ecuador before if: " + ecuador);
 if(!ecuador){
 doSimpleMath(australia);
 } // close if
 System.out.println("Chile: " + chile);
 System.out.println("Ecuador after if: " + ecuador);
 } // close main

 public static void doSimpleMath(int numToFlip){
 int result = (numToFlip * -1) + 15;
 System.out.println("Result: " + result);

 } // close doSimpleMath
} // close class

Output:

Solution Notes:
Remember the negation ! unary operator just “toggles” true values to false, and false
values to true.

When we use !ecuador to control the if() block, we are only using the variable in evaluation: we
are NOT changing the value of ecador with !ecuador. So, the value of ecuador before and after
if is false. BUT when we put !ecuador into the if() block, we get !false which evaluates to
true.

Method calls with parameter inputs

This means our call to doSimpleMath() is executed and whatever value is inside the () for this
method is passed down into doSimpleMath’s local variable called numToFlip.

When doSimpleMath is executed, australia was passed in as a parameter. In our case,
australia holds the value of 10 at the time of the call to doSimpleMath. The 10 is transferred by
the compoiler to numToFlip so when the right side of the assignment operator = on the first line
of doSimpleMath is executed, we have

(10 * -1) + 15 = -10 + 15 = 5 // brush up on your math if needs be! Gotta have the basics
down.

This is stored in result and printed to the console.

Multiplying a positive value by a negative value gives us a negative value so numToFlip
* -1 will just flip the sign on whatever value is in numToFlip.

	Output:
	Solution Notes:
	Output:
	Solution Notes:
	Output:
	Solution Notes:
	Output:
	Solution Notes:

